On Elliptic Equations in Rn Withcritical Exponents

نویسندگان

  • C. O. Alves
  • O. H. Miyagaki
چکیده

In this note we use variational arguments {namely Ekeland's Principle and the Mountain Pass Theorem{ to study the equation ?u + a(x)u = u q + u 2 ?1 in R N : The main concern is overcoming compactness diiculties due both to the unboundedness of the domain R N , and the presence of the critical exponent 2 = 2N=(N ? 2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$

‎We study the existence of soliton solutions for a class of‎ ‎quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth‎. ‎This model has been proposed in the self-channeling of a‎ ‎high-power ultra short laser in matter‎.

متن کامل

ON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS

In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...

متن کامل

Existence of Positive Solutions of a Class of Quasilinear Elliptic Equations on Rn

In this paper we study the following problem: −Δpu + |u|p−2u = k(x) f (u) + h(x) , x ∈ RN , where u ∈W 1,p(RN) , u > 0 in RN . Under appropriate assumptions on k , h and f , we prove that problem has at least two positive solutions.

متن کامل

Energy Estimates for a Class of Semilinear Elliptic Equations on Half Euclidean Balls

For a class of semi-linear elliptic equations with critical Sobolev exponents and boundary conditions, we prove point-wise estimates for blowup solutions and energy estimates. A special case of this class of equations is a locally defined prescribing scalar curvature and mean curvature type equation.

متن کامل

Multiple Positive Solutions for Degenerate Elliptic Equations with Critical Cone Sobolev Exponents on Singular Manifolds

In this article, we show the existence of multiple positive solutions to a class of degenerate elliptic equations involving critical cone Sobolev exponent and sign-changing weight function on singular manifolds with the help of category theory and the Nehari manifold method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996